Wind turbine design

Blade design

Unpainted tip of a blade
The ratio between the speed of the blade tips and the speed of the wind is called tip speed ratio. High efficiency 3-blade-turbines have tip speed/wind speed ratios of 6 to 7. Modern wind turbines are designed to spin at varying speeds (a consequence of their generator design, see above). Use of aluminum and composite materials in their blades has contributed to low rotational inertia, which means that newer wind turbines can accelerate quickly if the winds pick up, keeping the tip speed ratio more nearly constant. Operating closer to their optimal tip speed ratio during energetic gusts of wind allows wind turbines to improve energy capture from sudden gusts that are typical in urban settings.

In contrast, older style wind turbines were designed with heavier steel blades, which have higher inertia, and rotated at speeds governed by the AC frequency of the power lines. The high inertia buffered the changes in rotation speed and thus made power output more stable.

It is generally understood that noise increases with higher blade tip speeds. To increase tip speed without increasing noise would allow reduction the torque into the gearbox and generator and reduce overall structural loads, thereby reducing cost. The reduction of noise is linked to the detailed aerodynamics of the blades, especially factors that reduce abrupt stalling. The inability to predict stall restricts the development of aggressive aerodynamic concepts. Some blades (mostly on Enercon) have a winglet to increase performance and/or reduce noise.

A blade can have a lift-to-drag ratio of 120, compared to 70 for a sailplane and 15 for an airliner.

Leave a Reply